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Abstract: A system of k Neveu-Schwarz (NS) 5-branes of type II string theory with one

transverse direction compactified on a circle admits various unstable D-brane systems, —

some with geometric instability arising out of being placed at a point of unstable equilib-

rium in space and some with the usual open string tachyonic instability but no geometric

instability. We discuss the effect of NS 5-branes on the descent relations among these branes

and their physical interpretation in the T-dual ALF spaces. We argue that if the tachyon

potential controlling these descent relations obeys certain conditions, then in certain region

in the parameter space labelling the background the two types of unstable branes become

identical via a second order phase transition, with the geometric tachyon in one system

getting mapped to the usual open string tachyon of the other system. This would provide

a geometric description of the tachyonic instability of the usual non-BPS Dp-brane in ten

dimensional flat space-time.
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1. Introduction and summary

Type IIA and IIB string theories are known to admit unstable non-BPS D-branes. These

D-branes have tachyonic modes obtained by quantizing open strings living on these branes.

The physics of the tachyonic mode is by now well understood [1 – 3]. However there is no

clear geometric interpretation of these modes.

Some time ago Kutasov identified a D-brane system with a different kind of insta-

bility [4, 5]. This involves k Neveu-Schwarz (NS) 5-branes with a transverse circle, and

BPS Dp-branes with world-volume parallel to the NS 5-branes, placed as a point on the

transverse circle diametrically opposite to the NS 5-branes.1 At this point the potential

energy density of the D-brane has a saddle point. As a result this is a point of unstable

equilibrium and the Dp-brane has a tachyonic mode associated with the displacement of

the brane along the circle. Although this is a geometric mode, it was found in the analysis

of [4, 5] that the behaviour of this geometric tachyon is in many ways very similar to the

behaviour of the open string tachyon on a conventional non-BPS D-brane in flat space-time

background. Various other aspects of the dynamics of this system have been investigated

in [6 – 11].

In this paper we shall introduce several other unstable D-brane systems in the same

background geometry and study and compare their properties. These additional D-branes

are non-BPS D(p+1)-branes extending along the transverse circle — either wrapping the

1Even though it is a non-supersymmetric configuration, we shall continue to refer to this D-brane as

BPS D-brane in order to distinguish it from the usual non-BPS D-branes carrying open string tachyonic

modes even in flat space-time.
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circle or ending on the NS 5-branes — and other world-volume directions parallel to those

of the Dp-brane described in the last paragraph.2 These D-branes are unstable due to

the usual open string tachyon living on their world-volume; however they do not have any

additional geometrical instability.

A T-duality transformation on the transverse circle takes the original closed string

field configuration to type IIB/IIA string theory on ALF spaces [12, 13]. When the k NS

5-branes are all coincident in the original description, the T-dual geometry involves ALF

spaces with Ak−1 singularities but when the NS 5-branes are separated the singularity in the

T-dual geometry is resolved by blowing up the collapsed 2-cycles. The duality map relates

the geometrically unstable Dp-branes in the original background to BPS D(p+1)-branes

wrapped on the equators of these blown up 2-cycles, and the non-BPS D(p+1)-branes of the

original background to non-BPS Dp-branes and non-BPS D(p+2)-branes wrapped on these

2-cycles. By following the duality map we can derive various properties of these branes.

For example, one such property is that the tension of a BPS D(p+1)-brane wrapped on

the equator of a 2-cycle remains finite even when the 2-cycle collapses to zero size if the

D-brane carries a non-zero Wilson line along the collapsed cycle.

It was already noted in [4, 5] that the geometric tachyons have many properties in

common with conventional open string tachyons. Since we now have both types of D-

branes in the same background geometry, we can try to compare their properties in detail

and explore if this analogy can be made into an equivalence. Indeed one finds that the

two types of D-branes exihibit very similar behaviour. For example in the NS 5-brane

background the condensation of the geometric tachyon on the geometrcally unstable BPS

Dp-brane and the condensation of the open string tachyon on the non-BPS D(p+1)-brane,

— either into the vacuum or into a kink solution that depends on any of the p coordinates

common to both D-branes — produces identical configurations. Furthermore in the absence

of the NS 5-branes the non-BPS D(p+1)-branes and the BPS Dp-branes are related via

usual open string tachyon condensation [14]. This continues to hold even in the presence of

NS 5-branes, although we find that the precise form of these relations are modified. Thus

these two types of D-branes may be considered as two different classical solutions in the

same theory, — the world-volume theory of the non-BPS D(p+1)-brane. This leads to the

following question: Can these two solutions merge as we vary the external parameters e.g.

the radius of the circle or the number of NS 5-branes? If so, then at that point the two

systems will become identical, with the geometric tachyon on one getting identified with

the open string tachyon on the other. Such merger of solutions has indeed been observed

in a closely related system earlier [15].

This analysis however is plagued by the difficulty that the various properties of the

systems with geometric tachyons like the tension or the tachyon mass2 were calculated

using the Dirac-Born-Infeld (DBI) action and can in principle be affected by α′ corrections.3

When the number of NS 5-branes is large, the α′ corrections remain under control even up to

2This system is different from the one analyzed in [6] where non-BPS Dp-branes with world-volume

transverse to the circle S1 was considered.
3We show that the non-BPS D(p+1)-branes extending along the transverse circle do not suffer from this

problem.
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the zero radius limit. In this case we find that the two solutions do not merge. The BPS Bp-

brane in unstable equilibrium remains lighter than the non-BPS D(p+1)-brane wrapped on

the circle all the way from infinite radius to zero radius, and a tachyonic kink configuration

on the latter takes us to the former configuration. A naive comparison without taking

into account α′-corrections shows that in the particular case involving two coincident NS

5-branes and zero radius of the circle transverse to the NS 5-brane, the D-brane with

geometric instability and the usual non-BPS D-brane have identical tension and tachyon

mass2, — a coincidence already noted in [5]. In the absence of a non-renormalization

theorem we cannot reach a definite conclusion.4 However if it turns out that there is an

underlying non-renormalization theorem protecting the tension and tachyon mass2 of the

system with geometric tachyon, then it would be a strong indication that the solutions

describing the two types of D-branes merge at this point, with the geometric tachyon of

one system getting mapped to the usual open string tachyon of the other system.

In the T-dual geometry the non-BPS D-brane under consideration is a non-BPS Dp-

brane placed at a point in the ALE space with A1 singularity. This might lead one to

conclude that this correspondence, even if true, is not so exciting. However we should

recall that the interesting part of the usual open string tachyon dynamics is universal and

does not depend on the geometry of the transverse space in which the D-brane is placed.

In this particular example, the tachyon vacuum solution, the kink solutions along any of

the p directions tangential to the brane, or the rolling tachyon solution on this Dp-brane

are identical to those on a Dp-brane in flat space-time. Thus this correspondence, if true,

would provide us with a geometric understanding of the tachyon dynamics on a non-BPS

Dp-brane in flat space-time as well.

An interesting case is that of a single NS 5-brane background with a transverse circle

of radius R. Its T-dual geometry is Taub-NUT space of size R̃ = 1/R, which reduces to flat

space-time in the infinite R̃ limit. In the original NS 5-brane background we can construct a

geometrically unstable D-brane configuration by placing a BPS Dp-brane at a point on the

transverse circle diametrically opposite to the NS 5-brane. This configuration should exist

for large radius of the transverse circle, and the interesting question is: what happens to

this brane in the small radius limit when the dual geometry is flat space-time? For multiple

NS 5-branes the dual geometry has (collapsed) 2-cycles and the D-brane described above

has a natural description as BPS D(p+1)-branes wrapped on the equator of such a 2-cycle.

However the geometry dual to a single NS 5-brane does not possess a 2-cycle, and hence

there is no analogous interpretation for this D-brane. One can consider several possibilities:

1) it could describe a new unstable Dp-brane, 2) it could disappear from the spectrum by

having either zero or infinite tension, 3) instead of remaining localized, it could blow up

and fill the whole space in this limit or 4) it could describe the usual unstable Dp-brane. Of

these the fourth possibility is most exciting, since it will provide us with a direct geometric

interpretation of the usual open string tachyon on an unstable Dp-brane in flat space-time

as a geometric instability in the dual description.

4In a closely related situation where the NS 5-brane has non-compact transverse directions, it is known

that the DBI action produces certain results exactly [16].

– 3 –



J
H
E
P
0
5
(
2
0
0
7
)
0
3
5

The issue involved is of course the same issue raised earlier in the more general context

of multiple NS 5-brane background, but it will be useful to describe it again in this special

context. The system of one NS 5-brane with a transverse circle contains a non-BPS D(p+1)-

brane wrapped on the transverse circle. Its dual description is the usual non-BPS Dp-brane

sitting at the center of the Taub-NUT space, — precisely the configuration with which we

would like to identify the system described in the last paragraph. Furthermore for large

radius of the circle transverse to the five brane, a kink solution of the open string tachyon

on this non-BPS D(p+1)-brane can produce a BPS Dp-brane sitting diametrically across

the NS 5-brane, — the earlier system. Thus two systems can be viewed as different classical

solutions in the same theory, and we would like to ask if the two solutions can merge at some

critical radius as we reduce the radius of the transverse circle. If they do then it would mean

that below that critical radius the two solutions become identical. In the dual description

it would imply that the ‘new’ non-BPS Dp-brane constructed via the procedure described

in the previous paragraph and the usual non-BPS Dp-brane, sitting at the center of Taub-

NUT, will be identical when the size of the Taub-NUT space exceeds a critical value.

We can reformulate this problem in terms of an effective potential for the tachyonic

mode whose condensation takes us from the non-BPS D(p+1)-brane to the geometrically

unstable BPS Dp-brane.5 In this description the non-BPS D(p+1)-brane and the BPS

Dp-brane represent two different extrema of the tachyon potential. We show that the

quadratic term in the effective potential changes sign at some critical radius Rc of the

circle transverse to the NS 5-brane. If the coefficient of the quartic term is positive at

this critical radius then the two extrema merge at this critical radius and remain identical

below this radius. This represents a second order phase transition for the BPS Dp-brane

at which the spontaneously broken (−1)FL symmetry is restored. On the other hand if the

coefficient of the quartic term in the potential is negative at the critical radius, then the two

extrema do not merge and the D-branes do not become identical. With our present level

of knowledge we cannot determine what really happens; however we show that the first

possibility is more economical since it does not require the existence of any other extrema

of the potential. In contrast if the sign of the quartic term is negative at the critical radius

then new extrema of the potential appear below the critical radius, signalling new D-brane

configurations. If these extrema survive down to zero radius then we have the problem of

explaining what they are in the dual flat space-time geometry.

This effective potential approach can also be applied for other values of k, but the

potential will have different features for different k. If it turns out that there is a non-

renormalization theorem for the tension and the tachyon mass2 of the geometrically un-

stable D-branes for k ≥ 2, then the picture is somewhat trivial for k ≥ 2 coincident NS

5-branes. For k = 2 the critical radius where the two types of D-branes become identical

is at R = 0, whereas for k ≥ 3 the two types of D-branes remain distinct all the way down

to R = 0. However the picture becomes much richer once we consider a more general con-

figuration where the NS 5-branes are separated from each other. After all, if we consider

5This tachyonic mode should be distinguished from the tachyon zero mode whose condensation takes us

to the tachyon vacuum.
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the configuration of k NS 5-branes equally spaced on a circle of radius R, then it is a k-fold

cover of the configuration describing a single NS 5-brane with a transverse circle of radius

R/k. Thus the merger of the two D-brane configurations for R ≤ Rc in the k = 1 case

will imply that for k equally spaced NS 5-branes, a BPS Dp-brane sitting midway between

two neighbouring NS 5-branes and a non-BPS D(p+1)-brane stretched between the two

neighbouring NS 5-branes must become identical below the critical value kRc of R. In the

full moduli space spanned by R and the separation between the NS 5-branes we would

expect a codimension one critical surface that separates the region in which the two types

of D-branes are distinct from the region in which they are identical. In the special case

of k = 2 if we denote by 2c the angular separation between the two NS 5-branes on the

circle then the critical curve in the (R, c) plane should pass through the points (0, 0) and

(2Rc, π/2).

If the non-renormalization theorems do not hold then the detailed picture described

above will not be correct, e.g. for k = 2 the critical curve will not pass through the (0, 0)

point. However the general picture, ı.e. the existence of a critical surface that separates a

region where the two D-branes are identical from the region where they are not identical,

is based on the sign of certain coefficient in the tachyon potential, and will still hold if this

coefficient has the correct sign.

Finally we should remark that even though we have dealt with unstable systems with

tachyons, these may also be useful in getting stable non-supersymmetric configurations

after certain orbifolding that projects out the tachyon mode.

The rest of the paper is organized as follows. In § 2 we describe various unstable D-

brane systems in a background of multiple NS 5-branes with a transverse circle and discuss

descent relation between these different D-branes for large radius of the transverse circle.

In § 3 we discuss the description of these unstable D-branes in the dual ALF geometry. In

§ 4 we describe the zero radius limit of the original configuration that converts the dual

ALF geometry to ALE geometry and study the fate of the descent relations in this limit.

§ 5 describes comparison between different D-brane systems and possible identification of a

BPS D-brane with geometric tachyon with a non-BPS D-brane with the usual open string

tachyon. In § 6 we discuss the case of a single NS 5-brane with a transverse circle, and

determine under what condition a geometrically unstable D-brane in this background in

the zero radius limit would describe the usual unstable D-brane in a dual flat space-time

geometry. We conclude in § 7 with some comments.

2. Unstable D-brane configurations and their descent relations in NS 5-

brane background

We begin by considering a system of k NS 5-branes in type IIA/IIB string theory stretched

along the (x0, . . . x5) plane and placed at (x6, . . . x9) = (0, . . . 0). Let x6 be a compact

coordinate with period 2πR. The string metric, the dilaton Φ, and the NS sector 3-form

– 5 –
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field strength H produced by this background are given by [17, 18]6

ds2 = ηµν dxµdxν + H(~r, y)(dy2 + d~r2) , e2Φ = g2 H(~r, y) , Hmnp = −ǫmnpq∂
qΦ , (2.1)

where µ, ν run from 0 to 5, m,n, p, q run from 6 to 9,

~r ≡ (x7, x8, x9), y ≡ x6 , (2.2)

and

H(~r, y) = 1 +
k

2Rr

sinh(r/R)

cosh(r/R) − cos(y/R)
, r ≡ |~r| . (2.3)

This background is invariant under the transformation

σ : y → −y, ~r → −~r . (2.4)

This symmetry will play an important role in our analysis.

If the k 5-branes are not coincident but are placed at different points (~ri, yi) (1 ≤ i ≤ k)

then the solution is still described by (2.1), but with H given by

H(~r, y) = 1 +
k∑

i=1

1

2R|~r − ~ri|
sinh(|~r − ~ri|/R)

cosh(|~r − ~ri|/R) − cos ((y − yi)/R)
. (2.5)

We shall consider various types of non-supersymmetric D-brane configurations in the

background geometry described in eqs. (2.1), (2.3). The first type of such configurations,

which we shall call G-type D-branes because they will turn out to have geometric instability,

is obtained by placing a BPS Dp-brane (p ≤ 5) along (x0, . . . xp) at ~r = ~0, y = πR and

arbitrary values of xp+1, . . . x5 [5]. We shall summarize the main results of [5]. The DBI

action on the Dp-brane in this background will be given by

− g−1 Tp

∫
dp+1ξ

(
H(~Z, Y )

)−1/2 √
− detG (2.6)

where {ξα} (0 ≤ α ≤ p) are the Dp-brane world-volume coordinates — taken to coincide

with (x0, . . . xp), ~Z and Y denote respectively the ~r and y coordinates of the D-brane

world-volume, g−1 Tp denotes the tension of a BPS Dp-brane at ∞, and

Gαβ = ηαβ + H(~Z, Y )(∂α
~Z · ∂β

~Z + ∂αY ∂βY ) , 0 ≤ α, β ≤ p , (2.7)

is the induced metric on the Dp-brane world-volume. Note that we have ignored the motion

of the brane along the plane of the 5-brane as well as the dynamics of gauge fields on the

brane; these will not play any role in our analysis.

The overall multiplicative factor of (H(~Z, Y ))−1/2 provides a potential for the motion

of the brane. For H given in (2.3) this potential has an absolute minimum at Y = 0, ~Z = 0

where it vanishes, and a saddle point at Y = πR, ~Z = 0 where it has a minimum as a

function of ~Z but a maximum as a function of Y . Thus it represents a point of unstable

equilibrium [5] and Y becomes a tachyonic field on the Dp-brane world-volume. One can

6We shall use α′ = 1 convention throughout this paper.
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easily calculate the tension τp of the Dp-brane situated at (~Z = ~0, Y = πR) and the mass

squared m2
T of the tachyon on this D-brane coming from the unstable geometric mode.

The answers are

τp = g−1TpH(~0, πR)−1/2 = g−1 Tp

(
1 +

k

4R2

)−1/2

,

m2
T =

[
H−1/2 ∂2H−1/2

∂y2

]

~r=0,y=πR

= − k

(k + 4R2)2
. (2.8)

We should keep in mind however that the DBI action (2.6) receives higher derivative cor-

rections. Thus the results (2.8) can also receive higher derivative corrections. In particular

for low values of k and R ∼ 1, the spatial curvature as well as the derivatives of the dilaton

are of order one near (~r = 0, y = πR) and hence the corrections can be of order unity. We

shall return to a discussion about these corrections later.

It was noted in [5] that the tachyonic mode described by Y has many properties in

common with the usual open string tachyon on an unstable D-brane. Clearly the minimum

of the tachyon potential is at Y = 0 where the tension of the Dp-brane, being proportional

to H(~0, 0)−1/2 = 0, vanishes. Furthermore one can consider tachyonic kink configurations in

this theory located at xp = 0, described by the solution Y = 0 for xp < 0 and Y = 2πR for

xp > 0. This describes a BPS Dp-brane located at xp = 0 and stretched along x0, . . . xp−1,

y [5]. Neither of these general properties is expected to be modified by α′ corrections.

For future reference it will be useful to consider the situation where the k NS 5-branes

are displaced away from the (~r, y) = (~0, 0) point symmetrically to {(~ri, yi), 1 ≤ i ≤ k}
so that (~r, y) = (~0, πR) is still a point of unstable equilibrium for the Dp-brane. In this

case (2.5) shows that the tension of the Dp-brane situated at (~0, πR) is given by

τp = g−1 Tp H(~0, πR)−1/2 = g−1 Tp

(
1 +

k∑

i=1

1

2R|~ri|
sinh(|~ri|/R)

cosh(|~ri|/R) + cos (yi/R)

)−1/2

.

(2.9)

A second type of non-supersymmetric D-brane configuration in the same background is

obtained by placing a non-BPS D(p+1) brane [1 – 3, 19] spanning the coordinates x0, . . . xp

and y. We shall call these U-type D-branes to indicate that they carry the usual open

string tachyon. The world-volume action describing the dynamics of the massless modes

on this brane is given by

− 1√
2π

g−1 Tp

∫
dp+1ξ dy H(~Z, y)−1/2

√
− detG , (2.10)

where ({ξα}, y) denote the world-volume coordinates and

Gαβ = ηαβ + H(~Z, y)∂α
~Z · ∂β

~Z,

Gyy = H(~Z, y)
(
1 + ∂y

~Z · ∂y
~Z
)

,

Gαy = Gyα = H(~Z, y)∂α
~Z · ∂y

~Z . (2.11)

– 7 –
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As before we have ignored the dynamics of the gauge fields on the brane and the motion of

the brane along the NS 5-brane world-volume. Another field that has not been included in

the action (2.10) but will play an important role in our analysis is the open string tachyon

field.

This theory has a classical solution corresponding to

~Z = ~c , (2.12)

for any constant vector ~c, describing the non-BPS D(p+1)-brane situated as ~r = ~c and

spanning the x0, . . . xp, y directions. From the point of view of an asymptotic observer

this looks like a p-brane since one of its world-volume directions is compact. The tension,

defined as the mass per unit p-volume, and the mass2 of the open string tachyon living on

this D-brane is given by

τ ′
p =

1√
2π

g−1 Tp

∫
dy H(~Z, y)−1/2

√
− detG

∣∣∣∣
~Z=~c

=
√

2 R g−1 Tp m′2
T = −1

2
. (2.13)

This D-brane can decay into the closed string vacuum of zero energy density via tachyon

condensation [20 – 23]. Furthermore an xp dependent tachyonic kink solution on this D-

brane localized along the xp = 0 surface produces a BPS Dp-brane stretched along the

x0, . . . xp−1, y direction [14]. Due to the universality of the open string tachyon dynam-

ics [24, 25] neither of these properties is modified by α′ corrections. Thus the condensation

of the open string tachyon living on this D-brane, either into a kink or into its vacuum,

produces identical results as the condensation of the geometric tachyon living on the BPS

Dp-brane placed at y = πR. This provides us with the first hint that there may be some

deeper relation between these branes.

We shall now argue that unlike the formulæ (2.8), eqs. (2.13) are not modified by α′

correction. We begin with the tension. For this let us switch theories and consider type

IIB/IIA theory with the same NS5 background and a BPS D(p+1) brane along x0, . . . xp, y.

This is a supersymmetric system with no force between the D-brane and the NS 5-brane

and hence the tension of the D(p+1)-brane (defined as the mass per unit p-volume after

integration over the y coordinate) is given by the BPS formula which is independent of

~c and is not modified by α′ corrections. The same argument holds for a BPS D̄(p+1)-

brane in the same position. From this we can conclude that at string tree level when

the interaction between different D-branes can be ignored, the tension of a coincident

D(p+1)-brane-D̄(p+1)-brane at an arbitrary position ~c will be equal to twice that of a

single D(p+1)-brane. We can now take an orbifold of this system by (−1)FL to construct a

non-BPS D(p+1)-brane of IIA/IIB placed at ~c [14], with its tension given by
√

2 times that

of the BPS D(p+1)-brane in IIB/IIA theory. This is precisely the tension given in (2.13).

Thus we conclude that there is no α′ correction to the expression of the tension given

in (2.13) for any ~c.

The argument regarding tachyon mass2 is even simpler. Since the tachyon vertex

operator on the non-BPS D-brane is proportional to the identity operator in the matter

sector, and since the identity operator has dimension zero in all conformal field theories,

the mass2 of the tachyon on the non-BPS D(p+1)-brane must be given by (2.13).

– 8 –
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A major part of our analysis will focus on studying the relationship between the two

types of D-branes introduced above. We shall begin by comparing the action of the trans-

formation σ given in (2.4) on the tachyon on both types of branes. Since σ changes y → −y,

the geometric tachyon Y on the G-type D-brane, being the y coordinate of the D-brane

world-volume, clearly changes sign under σ. On the other hand it is known from the anal-

ysis of [14] that the open string tachyon field T on the unstable D(p+1) brane wrapped

along y also changes sign under σ. Thus if we restrict ourselves to σ invariant field config-

urations, we project out the geometric tachyon on the G-type D-brane as well as the zero

mode of the open string tachyon on the U-type D-brane. However, for sufficiently large

radius of the transverse circle the lowest lying σ invariant mode of the open string tachyon

on the U-type D-brane, satisfying T (y) = −T (−y), is also tachyonic, and its condensation

produces a Dp-brane at y = πR and a D̄p-brane at y = 0 [14]. Since the D̄p-brane at

y = 0, being on top of the NS 5-branes, has no tension and charge, it is indistinguishible

from the tachyon vacuum. Thus the resulting configuration is just a Dp-brane at y = πR,

ı.e. the G-type Dp-brane. This shows that both G and U-type D-branes can be regarded

as different classical solutions in a single theory — the world-volume theory of the U-type

brane. If we reduce the radius, then in the absence of 5-branes the situation is reversed

at a critical radius, and the U-type D-brane is obtained as a result of winding tachyon

condensation on the G-type brane [14]. We shall see in § 4-§ 6 that the situation changes

when NS 5-branes are present.

There is a third type of non-supersymmetric brane configurations with properties very

similar to those of the U-type branes described above. Here we consider again a non-BPS

D(p+1) brane spanning the coordinates x0, . . . xp and y, but this time instead of wrapping

the y circle it begins at one of the k NS5-branes, goes around the circle, and ends on

another NS5-brane. We shall call these S-type D-branes to indicate that they are non-BPS

D-branes stretched between the NS 5-branes. When all the 5-branes are coincident this

configuration has the same tension and the tachyon mass2 as the original configuration;

however this is no longer the case if we separate the five-branes. For example if we take a

pair of 5-branes at y = y1 and y = 2πR − y2 respectively, then a non-BPS D(p+1)-brane

stretching between these five branes will have tension and tachyon mass2 given by

τ ′′
p =

1√
2π

g−1 Tp (2πR − y1 − y2), m′′2
T = −1

2
. (2.14)

The tension coincides with τ ′
p given in (2.13) for y1 = y2 = 0 but not otherwise. In

particular if we take y1 = y2 = πR then the D-brane will have vanishing tension. Another

difference between this D-brane and the U-type D-brane considered earlier is that the latter

can be moved away from ~r = 0 at no cost in energy, but that is not the case for the new

system since the 5-branes are located at ~r = 0. An argument similar to that for the U-type

D-branes shows us that the tension and the tachyon mass formulæ for the S-type D-brane

also do not receive any α′ corrections. An xp-dependent tachyonic kink on this D-brane

localized at xp = 0 will produce a BPS Dp-brane along x0, . . . xp−1, y, ending on the two

NS 5-branes at the two ends. On the other hand a y-dependent tachyonic kink localized

at y = πR will produce a BPS Dp-brane at y = πR lying along x0, . . . xp, ı.e. a G-type
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unstable Dp-brane configuration.

3. Dual description in ALF spaces

We now consider a different description of the system related to the one given above by a

T-duality transformation along the circle along y. This maps the closed string backgound

involving the NS 5-branes to a configuration in type IIB/IIA theory of k coincident Kaluza-

Klein monopoles, or equivalently ALF space [26] with Ak−1 singularity at the origin [12, 13].

The dilaton and the metric associated with this background is given by

ds2 =

(
1 +

kR̃

2r

)
(
dr2 + r2(dθ2 + sin2 θdφ2)

)
+ R̃2

(
1 +

kR̃

2r

)−1 (
dψ +

k

2
cos θdφ

)2

e2Φ = g̃2 , (3.1)

with the identifications:

(θ, φ, ψ) ≡ (2π−θ, φ+π, ψ+
kπ

2
) ≡ (θ+2π, φ+2π, ψ) ≡ (θ, φ+2π, ψ+kπ) ≡ (θ, φ, ψ+2π) .

(3.2)

Here

R̃ = 1/R, g̃2 = g2/R2 . (3.3)

From the point of view of an asymptotic observer (r, θ, φ) are the polar coordinates with

origin at the location of the monopoles and ψ is the coordinate along the compact direction.

For k = 1 the geometry is smooth but for k > 1 there is an Ak−1 singularity at the origin

r = 0. This is best seen by introducing the cartesian coordinate system for the metric near

the origin:

w1 = 2
√

r cos
θ

2
cos

(
ψ

k
+

φ

2

)
, w2 = 2

√
r cos

θ

2
sin

(
ψ

k
+

φ

2

)
,

w3 = 2
√

r sin
θ

2
cos

(
ψ

k
− φ

2

)
, w4 = 2

√
r sin

θ

2
sin

(
ψ

k
− φ

2

)
. (3.4)

For k = 1 the coordinates {wa} are invariant under the identification (3.2), but for k > 1

there is an identification under a Zk rotation in the w1-w2 and w3-w4 plane.

It will be useful to examine the action of the transformation (2.4) on the dual geometry.

This can be figured out by examining its action at large |~r| where the (~r, y) space looks like

R
3 ×S1. Under a T-duality that takes the circle labelled by y to its dual circle labelled by

ψ, the image of (2.4) is known to be given by (−1)FL accompanied by ~r → −~r, ψ → −ψ

transformation. In terms of (r, θ, φ) coordinates this translates to

(−1)FL × {(r, θ, φ, ψ) → (r, π − θ, φ + π,−ψ)} . (3.5)

The solution described in (3.1) is actually a special limit of a general class of non-

singular solutions given by

ds2 = U(~r)
(
dr2 + r2(dθ2 + sin2 θdφ2)

)
+ R̃2U(~r)−1

(
dψ +

1

R̃
~ω.d~r

)2

e2Φ = g̃2 , (3.6)
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where

U(~r) = 1 +
R̃

2

k∑

i=1

1

|~r − ~ri|
, ~∇× ~ω = ~∇U . (3.7)

This space is completely non-singular; the apparent singulaities at ~r = ~ri being coordinate

singularities. There are various non-contractible two cycles described by taking the direct

product of the circle labelled by ψ and the straight line in ~r space joining ~ri and ~rj . Away

from ~ri and ~rj the resulting two dimensional surface looks like a cylinder but the circle

labelled by ψ collapses at the end-points ~ri and ~rj giving this surface the topology of a

sphere. In the limit ~ri → ~rj the 2-cycle passing through ~ri and ~rj collapses and the space

becomes singular. Explicit discussion on D-branes wrapped on various 2-cycles of this

geometry can be found in [27].

This geometry described in (3.6) is dual to the configuration of NS5-branes described

in eq. (2.5) with all the yi’s set to zero. Non-vanishing yi’s correspond to switching on flux

of NS sector 2-form field B through various 2-cycles of this geometry [12, 13].

We shall now describe the various unstable D-brane configurations introduced in the

previous section in this T-dual background. We begin with the G-type unstable D-branes

obtained in the original description by placing a BPS Dp-brane along x0, . . . xp at (~r =

0, y = 0) or (~r = 0, y = πR). Since T-duality acting on a D-brane localized at a point on

a circle maps it to a D-brane wrapped along the dual circle, we expect that the T-dual

description of the G-type brane is a BPS D(p+1) brane along x0, . . . xp and ψ, placed at

~r = 0.7 The coordinate y of the original Dp-brane corresponds to the Wilson line along

ψ on the dual D(p+1)-brane. In order to test this we begin with a configuration where in

the original description we move the NS 5-branes far away from the origin in a symmetric

fashion so that (~0, 0) and (~0, πR) remain extrema of the potential. In this case from (2.9)

we see that the tension of the Dp-brane is given by

g−1 Tp

(
1 +

k∑

i=1

1

2R|~ri|

)−1/2

+ O
(
e−|~ri|/R

)
. (3.8)

On the other hand in the dual description, the mass per unit p-volume of a D(p+1)-brane

wrapped along the ψ circle at ~r = 0 is obtained by integrating the tension of the D(p+1)-

brane along the ψ circle:

g̃−1 Tp

2π

∫
dψ R̃ U(~r)−1/2 = g−1 Tp

(
1 +

k∑

i=1

1

2R|~ri|

)−1/2

. (3.9)

This agrees with (3.8) up to exponentially suppressed terms. At the level of the supergravity

approximation we do not see a potential for the Wilson line or the exponentially suppressed

terms in (3.8); however these are expected to be induced by the world-sheet instanton

7We must caution the reader that this heuristic picture should be used with caution; α′ corrections

necessarily spread out the D-brane wave-function and hence the D-brane boundary states are not strictly

localized either in the original description or in the new description. However when all the |~ri|’s are large

and hence space-time near ~r = 0 is nearly flat, this picture becomes accurate.
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corrections [28 – 30]. Physically the ψ-circle at ~r = ~0 represents the equator of a blown

up 2-cycle. Thus we see that the T-dual description of the G-type Dp-brane is a BPS

D(p+1)-brane wrapped along the equator of a 2-cycle.

Once we have made the identification for large |~ri| we can now take the ~ri → 0 limit

on both sides. Let us focus on the y = πR case. In the original description this gives

a BPS Dp-brane of IIA/IIB placed diametrically opposite to a set of k coincident NS 5-

branes on a transverse circle. In the T-dual description the circle at ~r = 0 labelled by ψ

collapses to a point in this limit and we get a BPS D(p+1)-brane of IIB/IIA wrapped along

this collapsed circle, but carrying half a unit of Wilson line along this circle. According

to (3.9) the tension of this brane vanishes in this limit. This result however is likely to be

α′ corrected for all R since the curvature at ~r = 0 is strong. For small R̃ or equivalently

large R we can trust the computation of the brane tension in the original geometry, and by

exploiting the duality invariance we come to the conclusion that the tension of this brane

remains finite and is given by (2.8) in this limit if we switch on half a unit of Wilson line

on the brane along the ψ direction. On the other hand if the Wilson line is zero then

it corresponds to placing the Dp-brane at (~r, y) = (~0, 0), ı.e. at the location of the NS

5-branes, in the original description. Thus the tension of the brane vanishes in this case.

The k = 1 case deserves special attention. In this case there is a single NS 5-brane in

the original description, and we cannot move the NS brane away from (~0, 0) keeping (~0, πR)

a point of unstable equilibrium. Nevertheless by using the symmetry of the problem we

could interpret the dual of the BPS Dp-brane placed at (~r, y) = (~0, πR) as a BPS D(p+1)-

brane wrapped along the ψ circle at ~r = 0 with Wilson line along the ψ direction. Again

for sufficiently small R̃, ı.e. large R, this D-brane has finite tension given by (2.8) with

k = 1. This is somewhat surprising considering that the ψ circle collapses at ~r = 0 and

Taub-NUT space has no singularity at ~r = 0. We shall return to this case in § 6.

The non-BPS D(p+1)-brane of the original theory along x0, . . . xp, y placed at ~r are

easy to describe in the dual theory. This goes over to a non-BPS Dp-brane along x0, . . . xp

in the dual system placed at fixed values of ~r and ψ in the ALF space, with the location

along ψ determined by the Wilson line along y of the original system. In particular the

original D(p+1) brane placed at ~r = 0 corresponds to a non-BPS Dp-brane placed at ~r = 0

in the dual system.

Finally we turn to the S-type D-brane, extending from the ith to the jth NS 5-brane

in the original description. Again the simplest way to find their dual description is to

first move the NS 5-branes away from (~r, y) = (~0, 0) to positions (~ri, 0). In this process

the non-BPS D(p+1)-brane extending from the ith to the jth NS 5-brane gets stretched

between the points (~ri, 0) and (~rj , 2πR). Had the y coordinate been zero at both the end

points the D(p+1)-brane would have been fully localized in the y-direction and a T-duality

transformation would have delocalized it along the dual ψ direction, producing a non-BPS

D(p+2)-brane wrapped around the 2-cycle passing through ~ri and ~rj . By following the

standard rules of T-duality transformation one can show that the effect of one unit of

winding of the original D(p+1)-brane along the y direction is to produce one unit of gauge

field strength flux on the dual D(p+2)-brane through this 2-cycle. Thus the S-type brane

corresponds in this dual description to non-BPS D(p+2)-brane wrapped on the two cycle
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passing through ~ri and ~rj , with one unit of gauge field strength flux turned on through this

2-cycle. When the 5-branes in the original description are coincident, the 2-cycle collapses

to zero size with vanishing flux of the B field through them. In this case the D(p+2)-brane

would have vanishing tension if it did not have a gauge field flux turned on. The gauge

field flux however makes this into a non-BPS Dp-brane. Separating the NS 5-branes in

the original description along the y direction corresponds to switching on B-flux through

appropriate 2-cycles in the dual description. If we consider the special situation where the

ith and the jth NS 5-branes are brought at y = πR, it corresponds in the dual description

to one unit of B-flux through the corresponding 2-cycle. In this bulk this is equivalent to

having no flux, and hence vanishing cycles, but its effect on the D(p+2)-brane is to switch

off the flux of the gauge field strength. As a result the D-brane would now really have

vanishing tension, in agreement with what happens in the original description in terms of

NS 5-branes.

4. Small radius limit and the fate of the descent relations

Let us now take the limit [5]

R → 0, g → 0, g̃ ≡ g

R
fixed , (4.1)

and define new coordinate

ỹ =
y

R
, ~̃r =

~r

R
, (4.2)

in the original theory. In this limit eqs. (2.1), (2.3) take the form

ds2 = ηµν dxµdxν + h(~̃r, ỹ)(dỹ2 + d~̃r
2
) , e2Φ = g̃2 h(~̃r, ỹ) , (4.3)

h(~̃r, ỹ) =
k

2r̃

sinh r̃

cosh r̃ − cos ỹ
, r̃ ≡ |~̃r| . (4.4)

In this coordinate system the BPS Dp-brane in unstable equilibrium is situated at ~̃r = 0,

ỹ = π. The formulæ (2.8) for the tension and the tachyon mass2 of this G-type brane take

the form [5]:

τp =
2√
k

g̃−1 Tp , m2
T = −1

k
. (4.5)

On the other hand in this limit eq. (2.13), describing the tension and tachyon mass2 of the

U-type brane, — a D(p+1)-brane wrapped along ỹ, — reduces to

τ ′
p =

√
2 g̃−1 Tp , m′2

T = −1

2
. (4.6)

Finally the dual ALF space itself reduces to C
2/Zk in this limit since the size R̃ = 1/R of

the space goes to ∞. The string coupling in this dual theory is given by g/R = g̃.

Again (4.5) can receive α′ corrections. For finite k these corrections can be of order

unity. However for large k eq. (4.5) still remains a valid approximation. To see this let us

define new coordinates

ŷ =
√

k ỹ, ~̂r =
√

k~̃r , (4.7)
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and express (4.3), (4.4) as

ds2 = ηµν dxµdxν + ĥ(~̂r, ŷ)(dŷ2 + d~̂r
2
) , e2Φ = g̃2 k ĥ(~̂r, ŷ) , (4.8)

ĥ(~̂r, ŷ) ≡
√

k

2 r̂

sinh(r̂/
√

k)

cosh(r̂/
√

k) − cos(ŷ/
√

k)
, r̂ ≡ |~̂r| . (4.9)

From this we see that for large k the function ĥ is a slowly varying function of ~̂r and ŷ

near r̂ = 0, ŷ = π
√

k. Hence we expect the higher derivative corrections to the solution to

be small in this region and the results given in (4.5) should be reliable.

Given that eq. (4.5) can be trusted for large k, we can now compare it with (4.6).

We see that the tension of the G-type brane is less than that of the U-type brane, and

hence (σ invariant) tachyon condensation on the G-type brane cannot take us to the U-type

brane. This is qualitatively different from what happens in the absence of NS 5-branes;

in that case below a critical radius the G-type brane becomes heavier than the U-type

brane, and winding tachyon condensation on the former takes it to the U-type brane. In

fact in this case we expect the reverse to be true, namely the large radius result that σ

invariant tachyon condensation on the y wrapped non-BPS D(p+1)-brane takes us to a

BPS Dp-brane placed at y = πR (plus an anti Dp-brane with vanishing tension at y = 0)

should continue to hold all the way to the small R region. For this we require a σ invariant

tachyonic mode on the y-wrapped D(p+1)-brane. This will happen if the total length of

the y-circle, measured in the string metric, is large compared to the string length so that

the usual tachyonic kink solution satisfying T (y) = −T (−y) still exists on this circle. We

see from the metric (4.3) or (4.8) that this is the case for large k.8

One can give a physical picture of this situation as follows. For small R and large |~r|
where the effect of the NS 5-branes is small, a Dp-brane D̄p-brane pair placed at y = πR

and y = 0 respectively has higher tension than a D(p+1)-brane wrapped along y, and the

former can decay into the latter via tachyon condensation. This is the usual situation in

the absence of NS 5-branes. As we approach the NS 5-branes by reducing |~r|,, the tension

of the latter remains constant, while the total tension of the former configuration decreases

due to the decrease in the value of eΦ. At a certain critical distance away from the NS 5-

branes the former configuration will have less tension than the latter configuration, and the

D(p+1)-brane wrapped along y becomes unstable against possible decay into a Dp-brane

D̄p-brane pair placed at y = πR and y = 0.

An interesting question is: what happens for low values of k? We shall explore this in

§ 5 and § 6.

5. Comparison of different D-branes for low k

So far we have introduced different types of unstable Dp-brane system in the background of

k NS 5-branes of type IIA/IIB string theory with a transverse circle, or equivalently in the

dual type IIB/IIA string theory on ALF spaces, and explored how in certain cases tachyon

8Naively for any k the length is infinite due to the infinitely long throat near y = 0. However we cannot

trust the calculation for finite k due to large α′ corrections.
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condensation on one type of brane can take us to another type of brane. We now look

for possible relationship between these unstable D-branes that does not involve tachyon

condensation. Of these the relationship between the U and S type D-branes is easy to

comprehend. If we begin with a configuration where the NS 5-branes are separated along

the y direction, then the boundary state of the U-type D-brane at ~r = 0, describing a non-

BPS D(p+1)-brane wrapping the y circle, should coincide with the sum of the boundary

states of k different S-type branes, each connecting a given NS 5-brane to its immediate

neighbour. When the NS 5-branes coincide, (k− 1) of the S-type D-branes collapse to zero

size in the y direction whereas the remaining D-brane describes a S-type brane stretching

all the way around the y circle. The collapsed D-branes correspond to tensionless non-BPS

Dp-branes carrying no charge or tension, and up to these tensionless branes, the U and S

type branes can be identified in this case. In the dual ALF geometry this would mean that

the boundary state of a non-BPS D(p+2)-brane wrapped on a vanishing cycle carrying one

unit of gauge field strength flux through the cycle should coincide with that of a non-BPS

Dp-brane upto addition of boundary states describing non-BPS tensionless branes.9

Unfortunately, comparison between these and the G-type unstable Dp-brane is plagued

by the lack of understanding of α′ corrections to (2.8), (4.5). First of all the formulæ (2.8)

are most likely going to be modified by α′ corrections; there does not seem to be any

symmetry at finite R that protects these results from α′ corrections. This still leaves open

the possibility that the zero radius formulæ (4.5), which can be argued to be valid for

large k, may be exact. In fact this also cannot be strictly true for all k; for k = 1 the

eq. (4.5) gives a tachyon mass2 less than −1/2, requiring a negative dimension matter

sector operator for the construction of the corresponding vertex operator. Since this is not

possible in a unitary theory, we expect (4.5) to be modified for k = 1. In § 6 we shall use

the description in terms of tachyon effective potential to suggest a mechanism that could

modify the result for k = 1 without modifying the results for k ≥ 2. This will essentially

involve the G-type D-brane for k = 1 undergoing a second order phase transition at a finite

radius, below which it gets identified with the U-type D-brane.

If we do assume that eqs. (4.5) do not get modified under α′ corrections we find that

for k = 2 the tachyon mass2 given in (4.5) and (4.6) are identical [5] and furthermore

the tensions given in (4.5) and (4.6) also agree. This is an unexpected result since both

in the original geometry and in the dual geometry these D-branes are represented by

different kinds of objects. In the original geometry one is a BPS Dp-brane placed at a

given point on the circle while the other is a non-BPS D(p+1)-brane spread over the circle.

In the dual geometry one is a BPS D(p+1) brane wrapped on the equator of a vanishing

2-cycle, whereas the other can be represented either as a non-BPS Dp-brane or as a non-

BPS D(p+2)-brane wrapped on the vanishing 2-cycle with magnetic flux. However since

the string world-sheet theory is strongly coupled in this case, neither of these geometric

intuitions can be trusted, and if it turns out that there is an underlying non-renormalization

9Since a CFT whose target space has Ak−1 singularity is singular one may worry about the meaning of

boundary state in this context. We can however make sense of these statements by beginning at the orbifold

point where half unit of B-flux is switched on through the various cycles [31, 32] and then considering the

limit where these fluxes are turned down to zero.
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theorem for eq (4.5), then it would be a strong indication that the G- and the U- type

branes are identical in this case, with the geometric tachyon on one playing the role of the

usual open string tachyon on the other. Since for large radius R of the transverse circle the

G-type D-brane can be considered as the tachyon kink solution on the U-type brane, the

above result can be interpreted as the merger of the tachyon kink solution and the trivial

solution describing the original unstable D(p+1)-brane into a single solution at R = 0. In

§ 6 we shall discuss what this means for the tachyon effective potential that governs the

formation of y-dependent tachyon kink on the U-type brane.

The above result, if correct, would identify the usual non-BPS Dp-brane placed in an

A1 singular geometry to a BPS Dp-brane placed diametrically across 2 NS 5-branes on a

transverse circle in the dual geometry. This may not sound very exciting since we may not

care about non-BPS Dp-branes in singular spaces; however recall that the interesting part

of dynamics of the open string tachyon describing the tachyon vacuum, the rolling tachyon,

or the formation of the tachyon kink along any of the p spatial directions tangential to the

Dp-brane is universal and independent of the background geometry of the transverse space

in which the Dp-brane is placed [24, 25, 33, 34]. Thus identifying the open string tachyon

with the geometric tachyon in this system will give a geometric description of most of

the interesting phenomena involving tachyon condensation on a non-BPS Dp-brane in flat

space-time background.

Note that even when the tensions associated with two configurations become identical,

they could be related by marginal deformation instead of being identical. This is what

happens for D-brane systems in the absence of NS 5-branes [2, 14]. However since marginal

deformation typically changes the spectrum of open strings on the brane, it would not

explain why the tachyon mass2 on the two types of branes agree. In any case existence of

a marginal deformation connecting the two configurations is a highly non-generic situation

since it requires the tachyon potential to develop a flat direction. It is much more likely

for two solutions to merge at a given point in the space of external parameters, as was

demonstrated in a closely related example in [15].

It is also instructive to compare the properties of different types of branes when the NS

5-branes are separated from each other. For simplicity we shall consider the case of k = 2,

with one NS 5-brane at (~̃r = ~0, ỹ = c) and the other NS 5-brane at (~̃r = ~0, ỹ = 2π−c). Since

the U-type branes wrap the whole ỹ-circle, their properties are not affected by this move

and their tensions and tachyon mass2 continue to be given by (4.6). For the S-type brane,

ı.e. non-BPS D(p+1)-brane stretched between the two five branes, we get from (2.14):

τ ′′
p =

√
2 g̃−1 Tp

(
1 − c

π

)
, m′′2

T = −1

2
. (5.1)

On the other hand we can calculate the tension and the tachyon mass2 on a BPS Dp-brane

at ỹ = π with the help of eqs. (2.5)–(2.7), and get, in the scaling limit (4.1):

τp =
√

2 g̃−1 Tp cos
c

2
, m2

T = −1

2
(2 − cos c) . (5.2)

We see from (5.2) that for c 6= 0 we have m2
T < −1

2
. Since such a tachyon will require

a negative dimension matter sector vertex operator this formula certainly needs to be
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modified. In § 6 we shall suggest a mechanism for this modification that is similar to the

one that modifies the result for the k = 1 case.

One might have hoped that study of D-brane boundary states in a closely related

background describing the throat geometry of coincident 5-branes [35, 36] could shed some

light on the possible relationship between the G and U/S type branes described here.

However as can be seen from (4.3), (4.4), the background describing this system for any

given k (say k = 2) has no free parameters except the string coupling constant g̃ on which

the world-sheet conformal field theory has trivial dependence. Thus we cannot try to

analyze this problem with the help of any ‘nearby’ conformal field theory; we really need

to solve the problem exactly in the conformal field theory of interest.

6. A second order phase transition for k = 1?

For k = 1 we have a single NS 5-brane and there is no distinction between the U and S

type branes. Both of them correspond to an unstable Dp-brane sitting at the center of

Taub-NUT in the dual description. The G-type branes are however quite mysterious since

unlike in the case of multiple NS 5-branes, in this case the dual geometry does not have

a 2-cycle and hence we cannot wrap a BPS D(p+1)-brane on the equator of the 2-cycle.

Thus these must be some new kind of non-BPS Dp-brane configuration sitting at the center

of the Taub-NUT space. A natural question is: what happens to this Dp-brane in the flat

space limit?

Since this is an important issue it will be useful to review the steps leading to this

question:

(i) We consider a single NS 5-brane of type IIA/IIB with a transverse circle, and place

a BPS Dp-brane, with its world-volume parallel to that of the NS 5-branes, at a

diametrically opposite point on this transverse circle. All other transverse coordinates

of the brane are taken to coincide with that of the 5-brane. For large radius of the

transverse circle we expect this state to exist since α′ corrections are small. Hence

it must also have an appropriate description in the T-dual Kaluza-Klein monopole

background in type IIB/IIA theory even though this background is highly curved in

this regime.

(ii) We now tune the string coupling and the radius of the circle transverse to the 5-

brane to zero keeping their ratio fixed. In the dual description this corresponds to

taking the size of the Kaluza-Klein monopole to infinity, keeping the string coupling

constant fixed. This gives rise to flat space-time. The BPS Dp-brane parallel to the

NS 5-brane in the original description should get mapped to some Dp-brane in type

IIB/IIA in flat space-time in the second description. This is the D-brane we want to

study.

We can think of several possible scenarios:

(i) It describes a genuinely new unstable Dp-brane in flat space-time with finite tension

and tachyon mass2.
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(ii) α′ correction to (2.8) drives the tension to zero or infinity. In this case the ‘new’

Dp-brane does not really exist as an independent object in the spectrum.

(iii) In the flat space limit the brane spreads out over the whole space and does not

correspond to a localized Dp-brane with finite tension.

(iv) The new non-BPS Dp-brane is in fact identical to the usual non-BPS Dp-brane, and

the formulæ given in (4.5) are modified for k = 1 to those given in (4.6). This

amounts to saying that the G and the U-type branes become identical in the R → 0

limit.

It is tempting to speculate that the fourth possibility holds. In that case we shall have a

direct geometric interpretation of the open string tachyon on a non-BPS D-brane in flat

space-time in terms of the geometric tachyon on a BPS D-brane situated at a point of

unstable equilibrium in a dual geometry. We shall now present some observations which

indicate that this is a likely possibility.

(i) Let us express the formulæ for the tension and the tachyon mass2 on this brane given

in (2.8) in terms of the variables natural to the dual geometry, ı.e. g̃ and R̃ given

in (3.3). This gives:

τp = 2 g̃−1 Tp (4R̃−2 + 1)−1/2, m2
T = − 1

(4R̃−2 + 1)2
. (6.1)

Thus at small R̃ where the formula can be trusted, τp and |m2
T | start at small values

but begin increasing as we increase R̃. Thus it is not inconceivable that as we increase

R̃ to ∞, the values of τp and m2
T approach the tension

√
2 g̃−1 Tp and tachyon mass2

−1/2 of a usual non-BPS Dp-brane in flat space-time.

(ii) Since the geometric tachyon on the G-type brane changes sign under the transforma-

tion σ given in (2.4), the corresponding tachyon in the T-dual description must also

change sign under the image of σ given in (3.5). The tachyon on the usual non-BPS

Dp-brane in Taub-NUT space is also also odd under this transformation. This can

be seen either by working in the NS 5-brane background as discussed in § 2, or di-

rectly in the Taub-NUT geometry due to the presence of the (−1)FL factor in (3.5).

Furthermore, we have also seen that for large R, ı.e. small R̃, the G-type brane can

be regarded as a σ invariant tachyon field configuration on the U-type brane. Thus

it is natural to expect that by following this field configuration from small R̃ to large

R̃ the two types of branes can be related by a σ invariant field configuration even for

large R̃.

Now if we take the usual non-BPS Dp-brane, ı.e. the U-type brane in the R̃ → ∞
limit, then the requirement of σ invariance removes the tachyonic mode. Thus all σ

invariant field configurations on this brane will have higher tension than the tension

of the original brane. This would imply that the ‘new’ Dp-brane must be represented

by a classical field configuration on the usual Dp-brane of positive energy density.
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Furthermore this solution must be invariant under the p + 1 dimensional Poincare

group acting on the Dp-brane world-volume since the ‘new’ Dp-brane is manifestly

invariant under these symmetries. Such a field configuration would essentially require

a configuration of constant scalar fields. While we cannot rule out the existence of

such solutions, it will certainly be more natural if the ‘new’ Dp-brane turned out to

be the usual non-BPS Dp-brane. Note that this argument is special to the k = 1 case;

for k ≥ 2 the usual non-BPS Dp-brane is placed in a singular geometry, and there

may be additional σ invariant tachyonic mode on this brane which could condense

and take us to a lower energy density configuration. Indeed we have argued in § 4

by working in the NS 5-brane description that at least for large k such σ invariant

tachyonic modes are present on this brane.

We shall now present a concrete analysis using the language of tachyon effective poten-

tial to determine under what condition we can identify the ‘new’ and the ‘usual’ non-BPS

Dp-branes. Let us begin with a single NS 5-brane with a transverse circle of radius R. At

large R, the G-type D-brane — a Dp-brane placed at y = πR — is definitely lighter than

the U-type D-brane — a non-BPS D(p+1) brane wrapped along the y direction, and we

know that there is a σ invariant tachyonic mode on the latter configuration whose conden-

sation produces the former configuration. In fact since the circle size is large we expect

many σ-invariant tachyonic modes. We shall assume that the spectrum is discrete. This

may sound unreasonable from the point of view of the NS 5-brane description since the

D(p+1)-brane has an infinite length along the y-direction due to the infinite throat near

the NS 5-brane. However from the point of view of the dual Taub-NUT geometry we have

a Dp-brane sitting at the centre of a non-singular geometry, and there is no reason why

we should have a continuous spectrum.10 As we reduce the value of R, the modes of the

tachyon begin acquiring positive contribution to their mass2, and eventually all σ-invariant

tachyonic modes become massive in the R → 0 limit since in the dual description we have

a non-BPS Dp-brane sitting at the origin in flat space time with no σ-invariant tachyonic

mode. We shall begin our analysis in a range of values of R where all but one σ-invariant

tachyonic mode have become massive, and furthermore the magnitude of the mass2 of this

remaining tachyon is small compared to the string scale. In this region it should be possi-

ble to integrate out all other modes of the tachyon and define a tachyon effective potential

V (φ) for this single mode φ. The U-type brane will correspond to the local maximum

of the potential at φ = 0. On the other hand the G-type D-brane (D̄-brane) should be

described by some other local extrema at ±φ0 of V (φ) unless they have already merged

with the U-type brane by this time. If we reduce the value of R further, then below some

critical radius Rc the mode φ also becomes massive. Our goal will be to explore the fate

of the G-type brane during this transition.

φ, being a mode of the open string tachyon on a non-BPS D-brane, is odd under

(−1)FL . Thus the effective potential V (φ) must have φ → −φ symmetry. First let us

10Nevertheless we must admit that many aspects of this conformal field theory are not understood and

there may be subtle effects which invalidate our analysis.
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examine what would happen if V (φ) were a quartic potential of the form

V (φ) =
1

2
a(R)φ2 +

1

4
b(R)φ4 , b(R) > 0 . (6.2)

Now we know that for R > Rc, a(R) must be negative because the field φ is tachyonic.

Hence besides the maximum at φ = 0, (6.2) admits two minimia at ±φ0 with

φ0 =
√

−a(R)/b(R) (6.3)

which we can identify as a BPS Dp-brane or D̄p-brane placed as y = πR. As we reduce R,

a(R) vanishes at the critical radius Rc. At this radius φ0 vanishes and the G and U type

branes become identical.11 As we decrease R further a(R) becomes positive and the two

solutions continue to be identical. Thus below this critical value of R there is no distinction

between the G and U type branes.

Let us now consider the case of a general potential. We shall continue to denote by

a(R) and b(R) the coefficients of the quadratic and quartic terms in the potential. Thus

again we have a(R) < 0 for R > Rc and a(R) > 0 for R < Rc. It is easy to see that a

general potential will produce the same results if the following conditions are satisfied:

1. For R > Rc the Dp-brane / D̄p-brane must correspond to the minima of the potential

closest to the origin and this feature should continue all the way to the critical radius

where a(R) vanishes. In other words the potential should not have any additional

extrema corresponding to new (unstable) D-brane configurations.

2. At the critical radius where a(R) vanishes, b(R) must be positive. For negative b(R),

instead of the minima at ±φ0 merging with the maxima at 0, there will be new

maxima developing around φ = 0 as R goes below the critical radius.

We see that if either of the above conditions is violated then there will be new unstable

D-branes in the spectrum of the theory. Thus the most economical solution is to have the

minima at ±φ0 merge with the maximum at φ = 0 at the critical point.

If the picture described above is correct then it would seem that certain discrete sym-

metry associated with φ → −φ transformation, which was broken at the vacua φ = ±φ0, is

being restored below the critical value of R. Can we identify this symmetry? In fact this

is just the (−1)FL symmetry. Above the critical value of R the non-BPS D(p+1)-brane

wrapped along y, represented by the solution φ = 0, is (−1)FL invariant, but neither a

BPS Dp nor a BPS D̄p-brane situated at the point y = πR, represented by the solutions

φ = ±φ0, is invariant under (−1)FL . If the picture described above is correct, then it

would imply that below the critical value of R a BPS Dp and a BPS D̄p-brane situated at

the point y = πR describe identical configurations and become (−1)FL invariant. This in

particular will imply that the Ramond-Ramond part of the boundary state describing the

G-type branes should vanish below the critical value of R.

11In the absence of NS 5-branes the point where a(R) vanishes the whole potential vanishes and the two

types of branes, instead of being identical, are related by a marginal deformation. However this is a highly

non-generic situation and we are implicitly assuming that the presence of NS 5-branes turns this into a

generic situation [15].
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Note that this analysis also applies to other values of k except that the potential will

have different behaviour in those cases.12 For large k the analysis of § 4 shows that a(R)

remains negative as R → 0 and hence the solutions describing the two types of Dp-branes

remain distinct. If we believe that eqs. (4.5) are not renormalized then this should continue

to hold till k = 3, so that the G-type brane always remains lighter than the U-type brane.

On the other hand for k = 2, a(R) should vanish precisely at R = 0 so that the two types

of branes become identical at that point.

This analysis also suggests a mechanism that would modify the results (4.5) for k = 1

without modifying them for k ≥ 2. This happens essentially because for k = 1 the G-type

D-brane undergoes a second order phase transition at the critical radius Rc. For R < Rc

these D-branes merge with the U-type D-branes and hence the relevant formulæ to use

are those in (4.6). A naive analytic continuation of the results from the R > Rc region

will give us the corresponding quantities for the unphysical (complex) solutions. The same

reasoning should apply for the unphysical answers gotten in (5.2) for the G-type D-brane

in the presence of a pair of separated NS 5-branes. Since at zero separation c the branches

describing the G and U/S type D-branes meet exactly at R = 0, it is quite likely that for

non-zero c the branches will meet at non-zero R and the G-type D-brane will encounter a

second order phase transition where it merges with the S-type D-brane. Below this critical

radius the relevant formulæ are those given in (5.1). Thus in the (R, c) plane there will be

a line of second order fixed points passing through the (R = 0, c = 0) point. In fact this

phase transition is not disconnected from the one we encountered in the k = 1 case. For

c = π/2 the configuration of the pair of NS 5-branes is just the double cover of the k = 1

configuration, and the G and S type D-branes sees background identical to the G and U/S

type D-branes in the k = 1 case. Thus at c = π/2 the line of critical point in the (R, c)

plane should reach the k = 1 critical point R = 2Rc, the factor of 2 accounting for the fact

that the configuration for k = 2 is the double cover of the configuration for k = 1. The

same reasoning can also be applied to the case of k NS 5-branes. In this case we should

have a codimension one critical surface in the full moduli space labelled by the radius R

and the possible separation of the NS 5-branes maintaining the σ symmetry. This critical

curve does not pass through any physical value of R when all the branes are coincident, but

passes through the point R = kRc when the k NS 5-branes are situated as equal intervals

2πR/k along the transverse circle.

If the non-renormalization theorems are violated, then the precise details of the critical

surface will be different from the one given above. However we would expect the general

features to remain, assuming that the quartic term in the tachyon effective potential for

k = 1 has the correct sign. In this case we can start at the critical point corresponding to

R = kRc and equally separated NS 5-branes, and follow its fate in the moduli space of NS

5-brane configurations.

If it turns out that the non-renormalization theorems do hold, and the identification

12Since for two or more coincident NS 5-branes the dual geometry is singular, we cannot apply the

previous argument for the existence of an effective potential. However one can carry out the analysis by

first separating the NS 5-branes in a σ-symmetric fashion and at the end of the analysis take the coincident

limit.
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of the non-BPS Dp-branes with geometrically unstable Dp-branes in the T-dual theory

hold both for two coincident NS 5-branes as well as a single NS 5-brane at R = 0, then

we have two possible description of the open string tachyon on a non-BPS D-brane as a

geometric tachyon. Which one is more useful? Our first thought may be that the k = 1

case is more useful because it lands us directly on non-BPS Dp-branes in flat space-time.

The reverse however is true. For the k = 1 case we have seen that even if our picture of

branch merger holds, there is a switch of branch for the geometrically unstable D-branes

at the critical radius. In particular if we had made a naive analytic continuation of various

physical quantities of this system to values of R below the critical value, we would get the

wrong answer because it will land us into the wrong branch of (possibly complex) solutions

which do not correspond to any physical D-brane. On the other hand if for k = 2 the

two branches precisely meet at R = 0, then all the universal properties of the tachyon

on the non-BPS Dp-brane can be derived by analytic continuation of the results for the

geometrically unstable Dp-brane to R = 0.

One aspect of this correspondence may seem puzzling. One might wonder how the

boundary state of a Dp-brane that is localized at y = πR could coincide with that of a

D(p+1)-brane that spreads out along the y circle. This however is not a serious problem

since the tidal forces on the Dp-brane due to the y dependent dilaton will tend to spread

out the boundary state away from y = 0. Indeed this has been observed even in simpler

cases of hairpin brane boundary state [37, 38] where we have a linear dilaton background.

7. Discussion

In this paper we have argued that under certain conditions a BPS D-brane with geometric

instability due to being placed at a saddle point of the potential may be identified with a

non-BPS D-brane with the usual tachyonic instability. This would give a geometric inter-

pretation of the usual open string tachyons. It will be interesting to see if this geometric

picture can provide some insight into the analytic solutions of string field equations de-

scribing the tachyon vacuum and various solitons, — a problem whose bosonic counterpart

has only been solved recently [39 – 47]. Another aspect of tachyon condensation where the

present analysis may throw some light is vacuum string field theory [48], — string field

theory around the tachyon vacuum. For a geometrically unstable D-brane the tachyon

vacuum represents a D-brane sitting at the core of an NS 5-brane. This may provide some

insight into the nature of the open string tachyon vacuum.
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